Viewing Determinants as Nonintersecting Lattice Paths yields Classical Determinantal Identities Bijectively

نویسنده

  • Markus Fulmek
چکیده

In this paper, we show how general determinants may be viewed as generating functions of nonintersecting lattice paths, using the Lindström–Gessel–Viennotmethod and the Jacobi-Trudi identity together with elementary observations. After some preparations, this point of view provides “graphical proofs” for classical determinantal identities like the Cauchy-Binet formula, Dodgson’s condensation formula, the Plücker relations, Laplace’s expansion and Turnbull’s identity. Also, a determinantal identity generalizing Dodgson’s condensation formula is presented, which might be new.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lattice path constructions for orthosymplectic determinantal formulas

We give lattice path proofs of determinantal formulas for orthosymplectic characters. We use the spo(2m, n)-tableaux introduced by Benkart, Shader and Ram, which have both a semistandard symplectic part and a rowstrict part. We obtain orthosymplectic Jacob-Trudi identities and an orthosymplectic Giambelli identity by associating spo(2m, n)-tableaux to certain families of nonintersecting lattice...

متن کامل

Counting Nonintersecting Lattice Paths with Turns

We derive enumeration formulas for families of nonintersecting lattice paths with given starting and end points and a given total number of North-East turns. These formulas are important for the computation of Hilbert series for determinantal and pfaffian rings.

متن کامل

A Remarkable Formula for Counting Nonintersecting Lattice Paths in a Ladder with Respect to Turns

We prove a formula, conjectured by Conca and Herzog, for the number of all families of nonintersecting lattice paths with certain starting and end points in a region that is bounded by an upper ladder. Thus we are able to compute explicitly the Hilbert series for certain one-sided ladder determinantal rings.

متن کامل

The Major Counting of Nonintersecting Lattice Paths and Generating Functions for Tableaux

A theory of counting nonintersecting lattice paths by the major index and generalizations of it is developed. We obtain determinantal expressions for the corresponding generating functions for families of nonintersecting lattice paths with given starting points and given nal points, where the starting points lie on a line parallel to x + y = 0. In some cases these determinants can be evaluated ...

متن کامل

Lattice Path Proofs for Determinantal Formulas for Symplectic and Orthogonal Characters

We give bijective proofs for Jacobi{Trudi-type and Giambelli-type identities for symplectic and orthogonal characters. These proofs base on interpreting King and El-Sharkaway's symplectic tableaux, Proctor's odd and intermediate symplectic tableaux, Proctor's and King and Welsh's orthogonal tableaux, and Sundaram's odd orthogonal tableaux in terms of certain families of nonintersecting lattice ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2012